Genetic diversity of Vetiver clones (*Chrysopogon zizanioides* and *Chrysopogon nigritanus*) available in South Africa based on sequencing analyses

V. Diedericks, K. Conradie, S. Barnard, W. Towers

Introduction

- Hydromulch = leading Vetiver suppliers in RSA
- The Vetiver supplied for rehabilitation is in the form of vegetative slips
- "Roley collection" = different Vetiver lines collected by Mr Roley Nöffke

The Roley Collection

CODE	COUNTRY	SPECIES	SUPPOSED ISOLATE NAME
#ACCVD0001	Congo, DRC	C. zizanioides	Kinshasa
#ACCVD0002	Madagascar (South)	C. zizanioides	
#ACCVD0003	Congo, DRC	C. zizanioides	Kinshasa
#ACCVD0004	Australia	C. zizanioides	Monto
#ACCVD0005	Mozambique	C. nigritana	
#ACCVD0006	Venezuela	C. zizanioides	Caracas
#ACCVD0007	South Africa	C. zizanioides	Rustenburg
#ACCVD0008	Ethiopia	C. zizanioides	
#ACCVD0009	Madagascar (North)	C. zizanioides	
#ACCVD0010	Congo, DRC	C. nigritana	Kinshasa
#ACCVD0011	Ghana		
#ACCVD0012	Ghana	C. nigritana	Buleng
#ACCVD0013	Ghana	C. zizanioides	Manga
#ACCVD0014	New Zealand	C. zizanioides	Mazda
#ACCVD0015	Kenya	C. zizanioides	
#ACCVD0016	Mozambique	C. zizanioides	Nampula
#ACCVD0017	Puerto Rico	C. zizanioides	Sunshine
#ACCVD0018	South Africa	C. zizanioides	Rustenburg
#ACCVD0019	Ghana	C. zizanioides	Manga

Taxonomical Overview

- Chrysopogon and Vetiveria considered as two distinct genera
- Roberty revised genera in 1960
- Vetiveria merged into Chrysopogon
- Chrysopogon tends to form a variety of ecotypes
- C. nigritanus and C. zizanioides almost undistinguishable on morphological level

Previous Genetic Studies

- RAPD analyses on Vetiver available in India done by Dong et al (2003)
- RAPD analyses on Vetiver available in Thailand done by Srifah, et al
- RAPD analyses on Vetiver available in Thailand done by Na Nakorn (1993)
- RAPD analyses on Vetiver done in the USA by Kresovich (1994)
- RAPD analyses on Vetiver done by Adams & Dafforn

Aims

- Determine phylogenetic position of Vetiver clones in RSA by sequencing
- Compare clones to other clones already sequenced

Material and Method

- Vetiver samples by Mr. Roley Nöffke, Hydromulch
- DNA extracted (Qiagen DNeasy Mini Plant isolation kit)
- Genes amplified via PCR
 - ITS region of 5.8S ribosomal gene
 - ndhF and rbcL

Table 2. PCR protocol

Primer Set	PCR	PCR		
	Initial heat	Initial heat	PCR	Annealing
	denaturation	denaturation	Cycles	Temperature
	Temperature	duration		
ITS	95°C	2 minutes	30 cycles	58.0°C
ndhF	95°C	2 minutes	40 cycles	50.8°C
rbcL	95°C	2 minutes	35 cycles	63.5°C

- Products sequenced (Sanger method)
- Results analyzed (CLC workbench v6.0.2)
- Sequences aligned and edited

- Products sequenced (Sanger method)
- Results analyzed (CLC workbench v6.0.2)
- Sequences aligned and edited
- Construction of Phylogenetic trees (Neighbor-Joining trees)
 - Confirmed by Bootstrap analyses (1000 repetitions)
 - Software = ClustalX (v3.66)
 - Ref sequences and outgroups via BLAST

Results

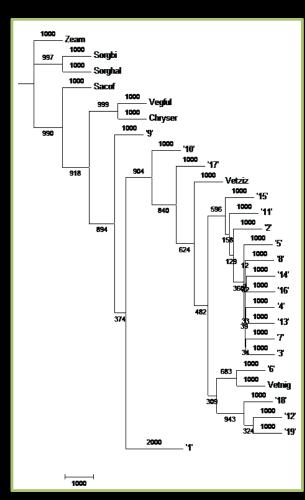


Figure 1. Neighbor-Joining tree of the 5.8 ribosomal and ITS gene.

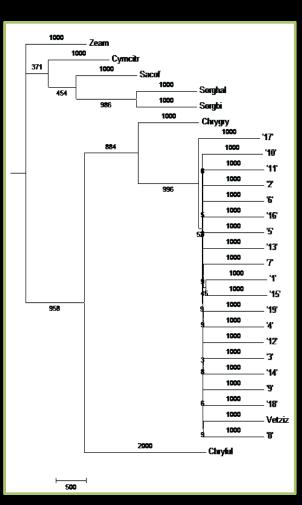


Figure 2. Neighbor-Joining tree of the *ndhF* chloroplast gene

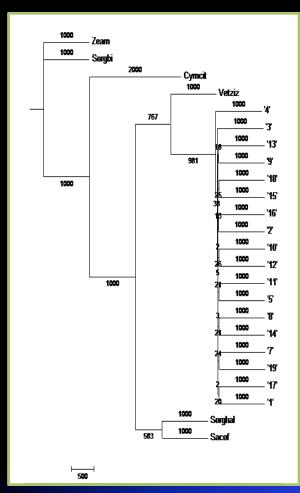


Figure 3. Neighbor-Joining tree of the *rbcL* chloroplast gene.

Conclusion

- Zea, Sorghum, Saccharum and Chrysopogon have a common ancestor
- Roley Collection clustered separately from C.
 zizanioides ref sequence
- Exception of ndhF gene
- C. nigritanus ref sequence clustered with Roley collection (ITS gene)
- Might indicate that Roley collection = more similar to *C.nigritanus*

- No statistically significant differences between isolates in Roley Collection
- Samples 4: Australia (rbcL gene), 9: Madagascar North (ITS gene), 10: DRC (ITS gene), and 17: Peurto Rico (ITS and ndhF gene), clustered separately from rest of Roley collection
- Basis for future genetic research

Recommendations

- Poliphase analysis
 - Biochemical analysis
 - Anatomical analysis
 - Morphological analysis
 - Symbiotic relationship analysis with micro-organisms

"Doesn't it feel good to be taking care of our planet?"

vickeydiedericks@gmail.com