Carbon Sequestration and Carbon Dioxide Emission in Vetiver Grass Cultivation Areas in Thailand

The Fifth International Conference on Vetiver, Lucnow, India, Oct 28-30, 2011

Prapa Taranet, Kamalapa Wattanaprapat, Isariya Meesing and Pornpat Nopmalai

Land Development Department,
Ministry of Agriculture and Cooperatives, THAILAND

:: Presentation Outline

- Introduction
- Objectives
- Materials and Methods
- Results and Discussion
- Conclusion

Introduction

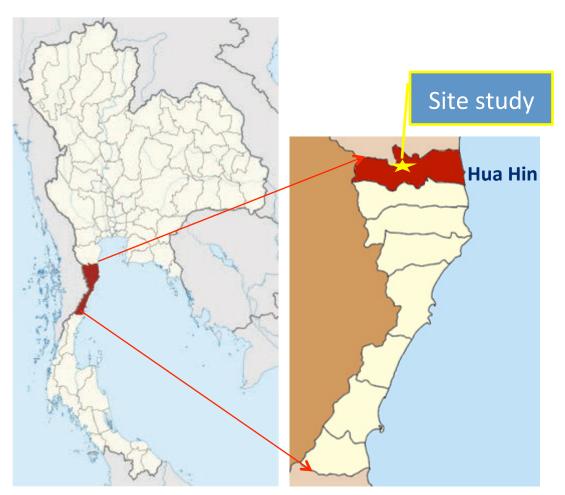
Research activity: Soil carbon dynamics research of LDD

Corn

Vetiver grass

Research projects

- Carbon sequestration
- > CO₂ emission
- Vetiver grass
 - high biomass, long massive roots
 - used for soil conservation
 - sequestering carbon into the soil


- Soil organic carbon stock increased about 10 times (from 24 to 229 tons C ha⁻¹) in soil at 1.2 m within 7 years of vetiver plantation (Khanema and Thammathaworn, 2010)
- ightharpoonup CO₂ emission rates in corn cultivation rates were ranged between 63 to 1006 mg CO₂ m⁻² h⁻¹ (**Jaiarree**, 2008)
- → After 4 years of wheat straw application (0, 8, 16 tons ha⁻¹), Soil organic carbon stock in 0-10 cm; 19.6, 25.6 and 26.5 tons ha⁻¹, respectively, and CO₂ fluxes ranged from 13 to 1229.2 mg CO₂ m⁻² h⁻¹ (Jacinthe et al, 2002)

Objectives

- ➤ To determine the amount of carbon sequestration and CO₂ emission from soil in vetiver grass cultivation areas comparing to non-vetiver grass cultivation area.
- To introduce the obtained data for soil quality improvement and soil and water conservation program.

Materials and Methods

<u>Study site</u>: The Chai Patthana-Mae Fa Luang Re-forestation Project Prachuap Khiri Khan Province:

N: 581584

E: 1394964

Sea Level = 126 M.

Air Temp = 22.6-33.4 °C

Rainfall = 937 mm/year

Study period: 2008-2010

Study area before preparation

- Soil name: Pran buri (Classification : Coarse-loamy, mixed, active, isohyperthermic Typic Haplustalfs)
- Pineapple is the primary crop cultivated

Treatments

- Non-vetiver grass (Bare soil)
- Sri Lanka ecotype

Chrysopogon zizanioides

- Surat Thani ecotype
- Prachuap Khiri Khan ecotype

Roi Et ecotype

-Chrysopogon nemoralis


Vetiver grass sampling and measuring

Vetiver grasses were cut 5 times after planting; 8, 12, 16, 20 and 24 months after planting (MAP)

In laboratory, biomass were dried at 80 degrees C and weighed as dry weight

In farm practice, biomass was weighed as fresh weight

The samples were analyzed to estimate organic carbon

Biomass was added into the soil

Soil sampling and measuring

Soil samples were collected 3 times at 3 levels of depth: 0-18, 18-40 and 40-70 cm

The undisturbed soil was taken by using core method to determine bulk density

The disturbed soil was taken to estimate soil organic carbon and other chemical properties

Closed chamber measurement

- 1. Measuring CO₂ emission by Hand-Held CO₂ Meter
- 2. Measuring soil, air and chamber temperature by a thermometer
- 3. The chamber was made from PVC with an inner diameter of 20 cm and height of 25 cm

4. Collecting the soil samples (soil moisture:SM)

Gas Sampling

Hand-Held CO₂ Meter fitted with the cover and placed on the chamber base which inserted into the soil

Measuring the volume of the chamber

Measuring CO₂ emissions within 15 minutes

Soil organic carbon (SOC) stock calculation:

SOC stock = SOC x Db x V

SOC stock soil organic carbon stock (g C m⁻²)

SOC soil organic carbon content (g C g⁻¹soil)

Db bulk density (g m⁻³)

V soil volume per area (m³ m⁻²)

CO₂ flux (F) calculation: (Hutchinson and Mosier, 1981)

Ci =
$$\frac{qiMP}{RT}$$
 (1) :: $F = \frac{V}{A} \frac{\partial Ci}{\partial t}$ (2)

Ci = mass/volume concentration (mg CO_2 m⁻³)

qi = volume/volume of CO_2 concentration (m³ m⁻³)

M = molecular weight of CO₂ (44 g mol⁻¹)

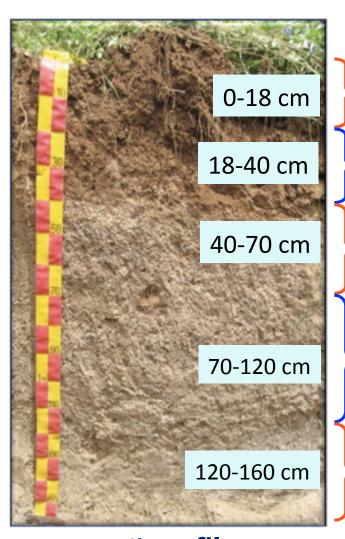
P = the atmospheric pressure (1 atm)

R = the gas constant $(0.082 \text{ m}^3 \text{ .atm K}^{-1} \text{ mol}^{-1})$

T = average temperature inside the chamber (K)

F = flux on the aerial basis (mg CO₂ m⁻³ sec⁻¹)

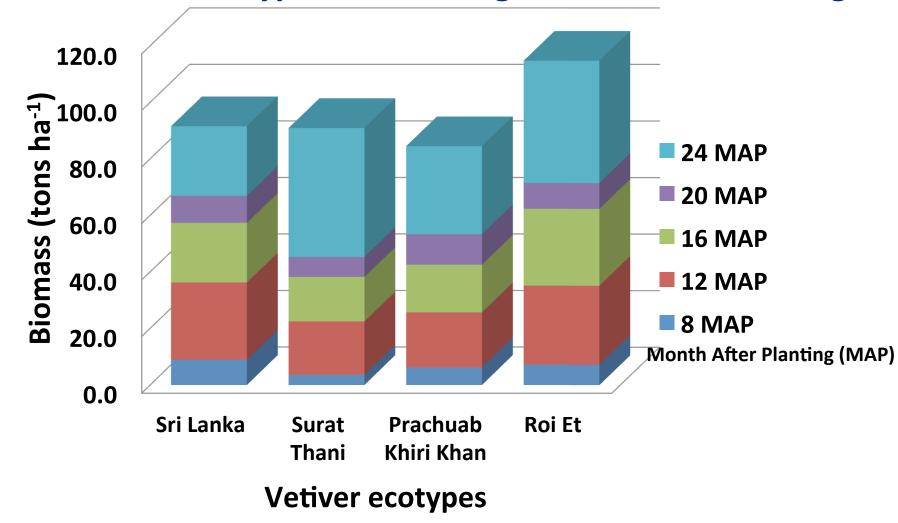
V =the volume of chamber (m3)


 $A = \text{area of soil enclosed by the chamber } (m^2)$

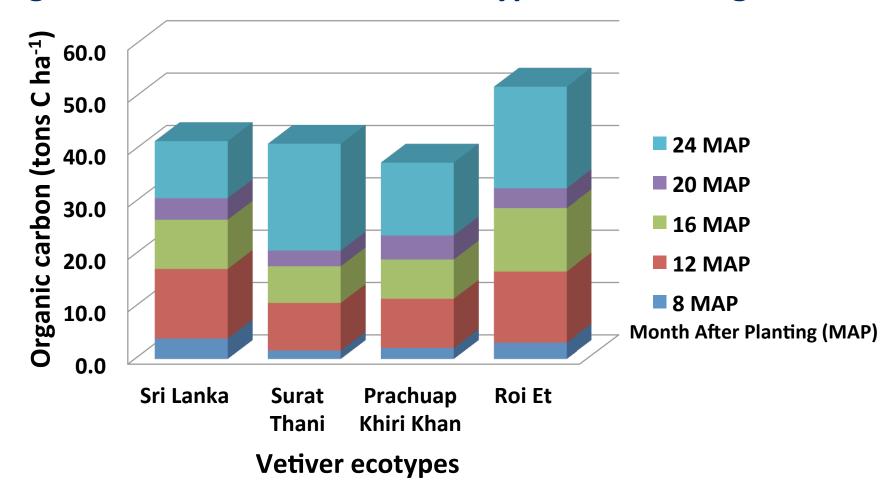
 $\frac{\partial Ci}{\partial t}$ = the increase of CO_2 concentration in the chamber as the function of time (mg CO_2 m⁻³ sec⁻¹)

16

Results and Discussion

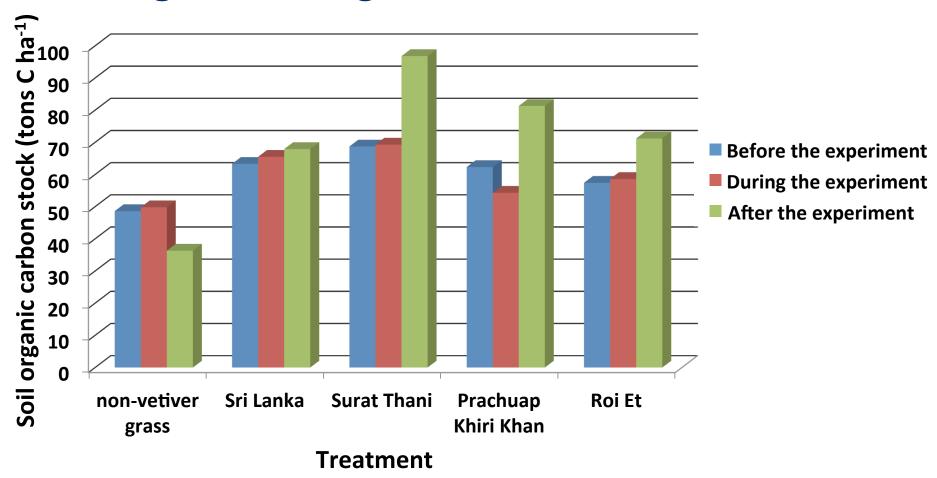

1. Soil characteristics

Text.	Db (g cm ⁻³)	SM (%)	рН (H ₂ O)	OM (%)	P (mg	K kg ⁻¹)
loam	1.6	15.8	7.7	1.24	35	145
gravelly loam	1.6	15.8	7.6	1.07	15	155
gravelly loam	1.4	15.7	8.0	0.71	6	61
gravelly loam	1.5	12.4	8.3	0.76	7	89
gravelly loam	1.5	7.7	5.2	0.34	4	42

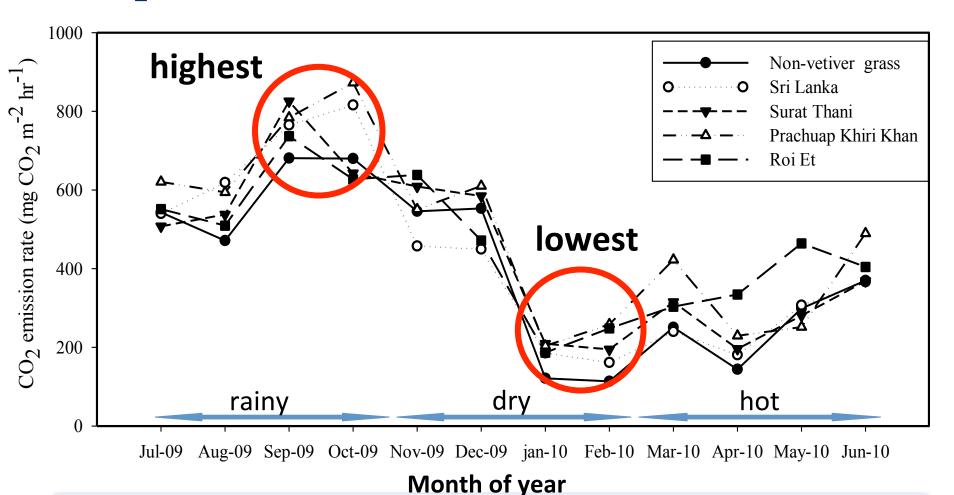

Soil profile

2. Biomass of 4 ecotypes of vetiver grass in 5 times cutting

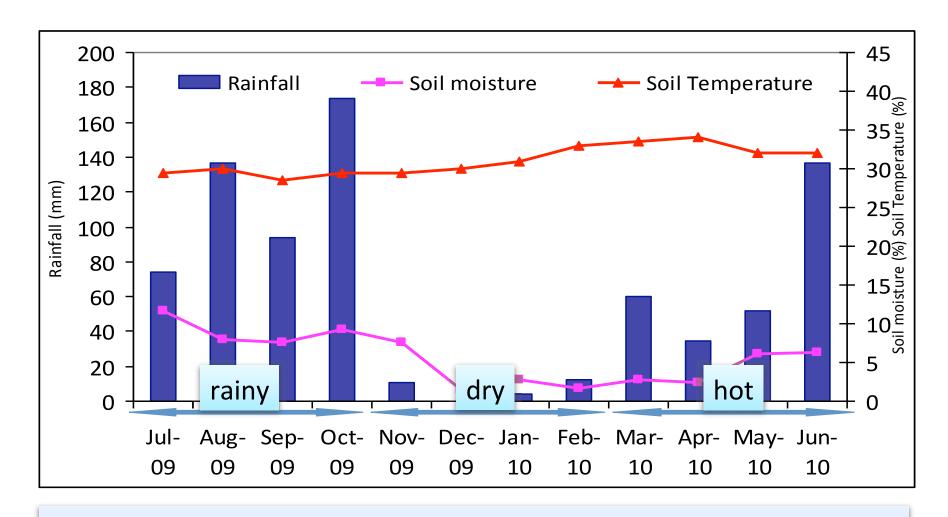
The highest yield = the <u>Roi Et (114.7 tons ha⁻¹)</u>
The lowest yield = the <u>Prachuap Khiri Khan (84.4 tons ha⁻¹)</u>
18


3. Organic carbon content in 4 ecotypes of vetiver grass

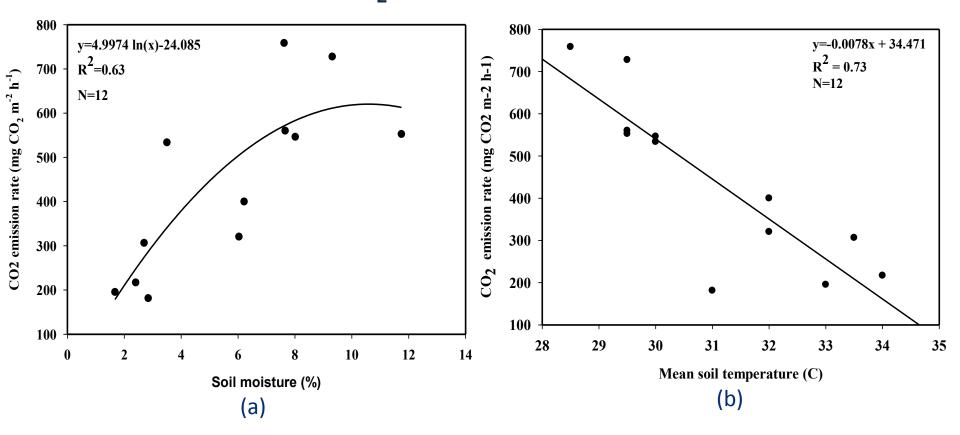
The highest OC content = the Roi Et ecotype (51.9 tons C ha⁻¹)


The lowest = the Prachuap Khiri Khan ecotype (37.6 tons C ha⁻¹)

4. Change in soil organic carbon stock


Soil organic carbon stock, in vetiver grass cultivation areas, carbon stocks increased but in non-vetiver grass cultivation area decreased

5. CO₂ emission from soil


Average CO₂ emission from vetiver grass cultivation areas and non-vetiver grass cultivation area from July 2009 to June 2010.

6. Rainfall, Soil moisture and Soil temperature

Monthly rainfall, average soil moisture and soil temperature at study site from July 2009 to June 2010.

7. Relationship between CO₂ emission and environmental factors

Relationship (a) between CO_2 emission from soil and soil moisture and (b) between CO_2 emission from soil and mean soil temperature

8. Carbon sequestration

	Carbon sequestration (tons C ha ⁻¹)				
Treatments	Plant organic carbon	Soil organic carbon	total		
 non-vetiver grass 	-	36.3	36.3		
 Sri Lanka ecotype 	10.9	67.9	78.8		
• Surat Thani ecotype	20.4	96.8	117.2		
 Prachuab Khiri Khan ecotype 	13.9	81.3	95.2		
• Roi Et ecotype	19.4	71.2	90.6		

^{*} Average organic carbon from vetiver grass 4 ecotypes and soil organic carbon at 24 months after planting

Conclusion

- ➤ Carbon can be more sequestered in vetiver grass cultivation areas than non-vetiver grass cultivation area. In this study, Surat Thani ecotype shows the highest trend of carbon sequestration.
- ➤ The CO₂ emission rate, the highest CO₂ emission rate was observed in rainy season and the lowest CO₂ emission rate was observed in the dry season.
- ➤ the obtained data can be transferred to soil and water conservation program and used to improve soil quality

Development Activities

Campaign on crop residues management by incorporate into soil for carbon sequestration

Implementation on trees plantation

<u>Acknowledgement</u>

- Land Development Department (LDD), Thailand
- Office of the Royal Development Projects Board,
 Thailand

THANK YOU FOR YOUR ATTENTION

