EFFICIENCY OF VETIVER GRASS CULTIVATED WITH FLOATING PLATFORM TECHNIQUE IN DOMESTIC WASTEWATER TREATMENT

Kanokporn Boonsong¹ and Monchai Chansiri²

¹Dept.of General Science, Faculty of Science, ²Inter-Dept. of Environment Science Chulalongkorn University, THAILAND

Domestic wastewater

Domestic wastewater mainly contained organic waste and nutrients (nitrogen and phosphorus).

Phytoremediation

- Phytoremediation is a clean up technology to exploit plant potential to remediate soil and water contaminate with pollutants.
- It is environmental friendly, inexpensive and can be carried out in polluted place.
- Utilization of vetiver system for wastewater treatment is a new and innovative technology.

Vetiveria zizaniodes (L.) Nash

No invasive Fast growing Deep root system High biomass production - Tolerant to adverse envi'l condition - Prefer wet and waterlogged habitat - Powerful to remove **N** and **P** from water

Objectives

(1) to compare the efficiencies of two vetiver ecotypes in treating domestic wastewater of different strengths using hydroponic technique

(2) to determine the growth and the degree of nutrient accumulation in those two vetiver ecotypes received different strength wastewater

Experimental Design

→ 3 x 3 x 2 factorial

2 replicates

total of 36 units

Experimental Design

HRT	HRT Vetiver		Wastewater strengths (C)			
(days)	ecotypes (B)	C1	C2			
	B1	A1R10L				
Songl	khla3 <mark>B2</mark>	A1 HCW	LCW C2			
	E Surat thani	A1B3C1	A1B3C2			
		A2B1C1	A2B1C2			
5 C (A2)	B2	A2B2C1	A2B2C2			
	B3 (control)	A2B3C1	A2B3C2			
	B1	A3B1C1	A3B1C2			
3 Q (A3)	B2	A3B2C1	A3B2C2			
	B3 (control)	A3B3C1	A3B3C2			

Each vetivers were pruned to
 20 cm. for the shoots (stems and leaves)
 13.5 cm for the roots.

 Each vetiver was planted onto a hole in platform.

Water Analysis

Parameters	Methods
рН	pH meter
Dissolved oxygen	Modified wrinkler method (AWWA, 1998)
Conductivity	Electromethric method
BOD	5-day BOD test (AWWA, 1998)
TKN	Semi-micro-Kjedahl method (AWWA, 1998)
NH ₄ -N	Distillation-titration (AWWA, 1998)
NO ₃ -N	Cadmium reduction method (AWWA, 1998)
Total Phosphorus	Acid digestion-ascorbic acid method
Ortho-PO ₄	Molybdenum blue method (AWWA, 1998)

Statistical Analysis

tested for the significant difference between wastewater strengths, vetiver ecotypes and detention times using ANOVA.

calculated for Duncan 's new multiple range test at 5% probability level

RESULTS AND DISCUSSION

Treatment Efficiency

Wastewater Quality

Parameters	HCW	LCW
рН	7.1 - 7.4	6.9 - 7.2
DO (mg/l)	0.0	0.0
BOD (mg/l)	90 - 95	44 - 59
TKN (mg/l)	41.0 - 52.8	34.7 - 42.1
NH ₄ -N (mg/l)	28.0 - 32.3	30.4 - 35.0
NO ₃ -N (mg/l)	0.02 - 0.07	0.02 - 0.05
TP (mg/l)	5.9 - 6.7	4.8 - 5.5
Ortho-PO ₄ (mg/l)	3.9 - 4.6	3.5 - 4.1

рH

HRT	Conc.	Influent	Effluent			
(days)			Song3	Surat	Control	
7 d	HCW	7.36	7.14	7.11	7.20	
	LCW	7.24	7.09	7.09	7.16	
5 d	HCW	7.05	7.15	7.17	7.28	
	LCW	6.93	7.14	7.18	7.26	
3 d	HCW	7.09	7.11	7.13	7.14	
	LCW	7.01	7.13	7.15	7.16	

pН

- Influent pH was 6.9-7.4 and effluent pH was 7.0-7.3.
- Generally, effluent pH was higher than influent and the values became nearly neutral.
- Effluent pH of vetiver sets were slightly lower than the control set
 => higher organic decomposition rate (could be observed by the higher BOD removal efficiencies) resulted in CO₂ and acid production which finally lower the effluent pH.

Dissolved oxygen (mg/l)

HRT	Conc.	Influent	Effluent			
(days)			Song3	Surat	Control	
7 d	HCW	0.00	° 3.88	^{b°} 3.57	° 4.08	
	LCW	0.00	° 4.12	^{a°} 4.76	° 4.68	
5 d	HCW	0.00	¢2.88	¢2.29	¢2.34	
	LCW	0.00	¢2.47	¢2.22	¢2.28	
3 d	HCW	0.00	[§] 1.30	[§] 1.34	§0.96	
	LCW	0.00	[§] 1.68	¢1.60	¢1.45	

Superscript letters (left downward) denote the significant difference among wastewater concentrations at p=0.05. Thai superscript letters (left downward) detention times

Dissolved Oxygen

- Effluent DO increased significantly from 0 to 1-5 mg/l.
- The rising of DO was the result of
 - -> aeration by wind
 - -> algal photosynthesis
 - -> translocation of O₂ through leaves and stems to roots

Dissolved Oxygen

- Effluent DO of 7-d HRT was significantly higher than 5- and 3- day.
- During the 3-d HRT phase, effluent DO of vetiver sets were higher than control sets.
- Whereas during the 7-d HRT phase, the control sets showed higher effluent DO.
- The main factor influenced the rising of DO during
 - -> short HRT phase vetivers
 - -> long HRT phase aeration by wind, algal photosynthesis

Dissolved Oxygen

 The effluent DO in HCW system was lower than LCW

=> the available DO in HCW system may be consumed in aerobic decomposition of organic matter

BOD

HRT	Conc	Influent	Eff	Eff (%)		
(days)	0010.	(mg/l)	Song3	Surat	Control	LII. (70)
7 d	HCW	^a 90.12	[§] 7.91	¢7.06	¢7.20	79.9-
7α	LCW	^b 44.28	§7.98	¢7.18	§8.72	91.4%
5 d	HCW	a 94.88	¢15.38	^{a°} 20.66	°21.23	69.0-
	LCW	^b 58.97	¢15.65	^{b°} 15.28	¢18.38	78.0%
3 d	HCW	a 94.97	° 21.62	°21.34	°27.15	48.4-
	LCW	^b 51.28	°22.53 ^b	°16.76 ^c	° 25.75 ª	77.4%

Superscript letters (right horizontal) vetiver ecotypes Superscript letters (left downward) wastewater conc. Thai superscript letters (left downward) detention times

BOD

- The removal efficiencies of Surat Thani ecotype was significantly higher than Songkhla3.
- The removal efficiencies of vetiver sets was significantly higher than control sets especially during the 5- and 3-d HRT phases.

=> indicated the beneficial effect of vetiver

- The average BOD removal efficiencies of 7-d HRT was significantly higher than 5- and 3-d HRT respectively -> related to higher DO concentration
- The removal efficiencies of HCW system was significantly higher than LCW.

Different letters denote the significant difference among vetiver ecotypes at p=0.05.

BOD

HCW

(HRT 7 days)

HRT 5 days

| HRT 3 days

LCW

Different letters denote the significant difference among HRT at p=0.05.

HRT 7 days

HRT 5 days

HRT 3 days

Different letters denote the significant difference among wastewater concentrations at p=0.05.

TKN

HRT	Cono Influent		Ef			
(days)	(days)	(mg/l)	Song3	Surat	Control	EII. (70)
7 d	HCW	^a 52.81	¢19.831	[§] 19.094	[§] 19.21	52.4-
70	LCW	^b 42.14	¢18.675	[§] 19.319	[§] 19.51	62.5%
5 d	HCW	^a 42.81	¢21.78 ^b	¢23.23 ^{ab} ¢25.51 ^a	28.8-	
5 Q	LCW	^b 36.24	¢22.02b	¢24.21 ^{ab}	¢ 26.16 ª	45.5%
	HCW	^a 41.03	^{b°} 28.036	^{b°} 27.99	^{b°} 29.19	10.0-
3 d	LCW	^b 34.73	^{a°} 30.32 ^a	^{a°} 29.56 ^b	^{a°} 31.22 ^a	31.7%

Superscript letters (right horizontal) vetiver ecotypes Superscript letters (left downward) wastewater conc. Thai superscript letters (left downward) detention times

Different letters denote the significant difference among HRT at p=0.05.

HRT 7 days

HRT 5 days

HRT 3 days

Different letters denote the significant difference among wastewater concentrations at p=0.05.

NH₄-N

HRT	Cono	Influent	Ef			
(days)	Conc.	(mg/l)	Song3	Surat	Control	EII. (70)
7 d	HCW	^b 32.29	¢15.65	[§] 14.30	[§] 14.37	50.2-
70	LCW	^a 35.02	¢14.21	[§] 15.21	[§] 15.34	58.6%
5 d	HCW	^b 28.34	¢17.73	¢19.30	¢20.53	26.5-
50	LCW	^a 31.06	¢18.10 ^b	¢20.77 ^{ab}	¢ 21.54 ª	41.5%
2 4	HCW	^b 28.00	^{b°} 22.94 ^b	^{b°} 24.21 ^{ab}	^{b°} 24.67 ^a	11.6- 16.0%
3 d	LCW	^a 30.35	^{a°} 25.93	^{a°} 25.40	^{a°} 26.50	

Superscript letters (right horizontal) vetiver ecotypes Superscript letters (left downward) wastewater conc. Thai superscript letters (left downward) detention times

HCW

Songkhla3

Songkhla3
 Surat Thani
 Control

LCW

Different letters denote the significant difference among vetiver ecotypes at p=0.05.

LCW

Different letters denote the significant difference among HRT at p=0.05.

Different letters denote the significant difference among wastewater concentrations at p=0.05.

NO₃-N (mg/l)

HRT	Conc.	Influent	Effluent (mg/l)			
(days)		(mg/l)	Song3	Surat	Control	
7 d	HCW	a 0.07	¢0.33	° 0.3 8	¢0.42	
	LCW	^b 0.05	° 0.4 1	°0.36	¢0.43	
5 d	HCW	0.03	° 0.58 ab	° 0.43 ^b	° 0.70 ª	
	LCW	0.03	° 0.48 ^b	° 0.41 ^b	° 0.71 ª	
3 d	HCW	^b 0.02	§0.06	¢0.06	§0.07	
	LCW	a 0.02	¢0.07	¢0.07	\$ 0.0 8	

Superscript letters (left downward) denote the significant difference among wastewater concentrations at p=0.05. Thai superscript letters (left downward) letters (left downward)

Total Phosphorus

HRT		Influent	E	Eff (0/)		
(days)	Conc.	(mg/l)	Song3	Surat	Control	EII. (70)
7 d	HCW	^a 6.66	¢ 4.28 ^b	¢ 4.24 b	^a 5.46 ^a	8.5-
7 0	LCW	^b 4.84	¢ 4.06 ^b	4.07 ^b	^{b¢} 4.43 ^a	35.9%
5.4	нсพ	^a 6.55	°5.29	°5.15	5.90	7.2- 21.2%
5 d	LCW	^b 5.48	°4.62	4.47	°5.08	
	HCW	^a 5.89	° 4.83 ^b	^{a°¢} 4.71 ^b	^a 5.31 ^a	6.3- 20.3%
3 d	LCW	^b 5.06	° 4.54 ^{ab}	^b 4.33 ^b	^{b°¢} 4.74 ^a	

Superscript letters (right horizontal) vetiver ecotypes Superscript letters (left downward) wastewater conc. Thai superscript letters (left downward) detention times TP

LCW

Different letters denote the significant difference among vetiver ecotypes at p=0.05.

HRT 7 days
HRT 5 days
HRT 3 days

HCW

LCW

Different letters denote the significant difference among HRT at p=0.05.

HRT 3 days

Different letters denote the significant difference among wastewater concentrations at p=0.05.

Ortho-PO₄

HRT		Influent	E	Eff (0/)		
(days)	Conc.	(mg/l)	Song3	Surat	Control	EII. (70)
7 d	HCW	^a 3.91	^{a¢} 3.13 ^b	¢ 2.99 ª	¢ 3.25 ª	8.1-
7α	LCW	^b 3.54	^{b§} 2.99 ^b	¢ 2.98 ^b	§3.31ª	23.5%
5 d	нсพ	^a 4.59	^{a°} 3.82 ^{ab}	° 3.61 ^ь	^{a°} 4.04 ^a	10.6- 21.2%
5 d	LCW	^b 4.10	^{B¢} 3.50	° 3.4 6	^{b¢} 3.65	
0.1	HCW	^a 4.41	° 3.69 ªb	° 3.4 7 ^b	° 3.89 ª	7.4- 19.3%
3 d	LCW	^b 4.08	° 3.70 ^{ab}	° 3.57 ^b	° 3.83 ª	

Superscript letters (right horizontal) vetiver ecotypes Superscript letters (left downward) wastewater conc. Thai superscript letters (left downward) detention times

Different letters denote the significant difference among vetiver ecotypes at p=0.05.

HCW

LCW

Different letters denote the significant difference among HRT at p=0.05.

HRT 7 days

HRT 3 days

Different letters denote the significant difference among wastewater concentrations at p=0.05.

Growth and Biomass of Vetivers

Growth of Vetivers

 The survival percentages of Surat Thani and Songkhla3 ecotypes were 75-100%. - The survival percentage during 3-day HRT was lower than 7- and 5-day HRT. => low O₂ available => retarding respiration and ion absorption of vetivers. - The survival percentage of vetivers planted in LCW was slightly higher than in HCW.

Biomass

- Surat Thani ecotype showed the tendency of higher increment of root biomass than Songkhla3.

=> Surat Thani ecotype could develop better root system

Biomass

 Songkhla3 planted in HCW tended to have higher shoot biomass than Surat Thani and than those planted in LCW.

 Surat Thani planted in LWC showed higher shoot and root biomass.

Nitrogen Accumulations

 Songkhla3 planted in HCW showed higher N accumulation in shoots and roots than Surat Thani.

 In contrast, Surat Thani planted in LCW showed higher N accumulation than Songkhla3.

Phosphorus Accumulations

 Generally, Surat Thani ecotype showed higher TP accumulation than Songkhla3.

=> This result correlated to higher TP and ortho-PO₄ treatment efficiencies of Surat Thani than Songkhla3.

CONCLUSION

 The results from this study using hydroponic technique indicated that even treatment efficiencies of N and P were low compare to other studies which had soils as media, vetivers showed a good potential to be used in situ to treat domestic wastewater.

- The 7-day HRT showed highest treatment efficiencies.
- The treatment efficiencies of BOD, TKN, TP, ortho-PO₄ and NH₄-N increased with concentrations which indicated high potential of vetiver to treat HCW.
- The treatment efficiencies of BOD, TP and ortho-PO₄ of Surat Thani ecotype were slightly higher than Songkhla3 ecotype.

- The results closely correlated with the study of growth which found that Surat Thani could develop better root system than Songkhla3 in both HCW and LCW. => As a results, it absorped higher amount of ortho-PO₄ for root development.

 The treatment efficiencies of NH₄-N of Songkhla3 was slightly higher than Surat Thani. => The results closely correlated with the study of growth which found that Songkhla3 planted in HCW tended to have higher shoot biomass and N accumulation.

- The optimal condition of vetivers cultivated with floating platform technique in domestic wastewater treatment should be designed at 7-day HRT and planted with Surat Thani ecotype.
- But if wastewater contained high nutrients, Songkhla3 ecotype should be planted instead.

The method to increase oxygen in the system should be provided. Since available oxygen is one factor that limited the treatment efficiencies of nutrients, especially N; and growth of vetivers.

ACKNOWLEDGEMENT

RATCHADAPISEK SOMPHOT CHULALONGKORN UNIVERSITY

Õ"§"√^a√–<mark>‡¿Σµ</mark>Ë"βÊ

a / ±.5õ"s" /	¢π"¥¢OßO"§"√Σ'Ĕ"Άπ¥j"μ√ ª / μ⋅Σõ"s" / Èß					
~~∓¿ZU S √	o	¢	Ś	ß	R	
1.Õ"§"√™ÿ¥µ"i°ÆÀi" ¬«Ë"¥È«¬Õ"§"√™ÿ¥	μ—Èß · μ Ë 500 ÀÈÕßπÕ	100 - ‰jË∂÷ß 500	‰iË∂÷ß- 100 ÀÈÕßπÕ	-	-	
2.,√ß·√jµ"j°ÆÀj"¬«Ë" ¥È«¬,√ß·√j	μ—Ė̃ß∙μ 2Ӫ0	ALOISHO 60,- ‰;‡;;;;;:	‰¡Ë∂÷ß 60 ÀÈÕß	-	-	
3.ÀÕæ—°µ"i°ÆÀi"¬ «Ë"¥È«¬ÀÕæ—°	AE <u>O</u> ß	μ <mark>Αξριβ</mark> μ Ë 250 ÀÈÕß	50- ‰¡Ë∂÷ß 250	10 - ‰¡Ë∂÷ß 50 ÀÈÕß	-	
4. ∂"π∫√'°"√	-	µ—Èß∙µ Ë 5,000 i∙	A,€OOB_ ‰iË∂÷ß 5,000 i ²	-	-	
5.,√ßæ⊐"∫"≈⊄Õß∑"ß√ "™°"√À√◇Õ ∂"πæ¬"∫" ≈µ"i°ÆÀj"¬	μ—Èß∙μ Ë 30 ‡μ'¬ß	10 - ‰¡Ë∂÷ß3 0 ‡µ'¬ß	-	-	-	

<u>Õ"§"√ª√–‡¿Σµ</u>Ë"βÊ

a /_+.\\Õ"\\" /	¢π"¥¢ÕßÕ"§"√Σ'˰"Àπ¥¡"μ√∞"π°"√√–∫"¬πÈ"Σ'Èß				
√-+2∠0 S √	o	¢	§	ß	R
6.Õ"§"√,√β‡√'¬π√"…Æ√ Ϊ ↓ ⟨β±, /'¬≖⊄Õβ∑"β, /"™°", /	µ—Èß∙µË	5,000- ‰jˇ°'π°«	-	-	-
[,] ʹ∂ ^ω ∱ <u>~</u> πΌϔ¥ϳ» , ^α "¢O߇ Õ ^{°™} πÀ√◇Õ ∂"∫—πÕÿ¥į	25,000 j. ⁻	25,0 0 0 j. ⁻			
»,÷ °"¢Ols <u>></u> "ls√"™°"√ Õ"§"√∑'Ë∑"°"√¢Õß∑"β√	µ—Èß∙µË	10,000- ‰jË∂÷ß	5,000- ‰jË∂÷ß	-	-
"™°"√√−A≪Ë́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́	55,000 j. ²	55,000 j. ²	10,000 j. ²		
8.Õ"§"√¢Õß»Ÿπ¬Ϊ°"√§È" À√◇ÕÀÈ"ß √√æ 'π§È"	μ—Èß·μË2 5,000 _i .2	5,000- ‰jË∂÷ß25 ,000 j.2	-	-	-
9. µ≈"¥	‡°'π°«Ë"À√ ‡∑Ë' ^ŵ Õ_∫2, 500 j.²	1,500- 2,ງເຮັດີວ່ີ - ເຮັ	1,000- ૠૢ૿ ૽ ૻૢ૽ૢૢ૽ૼ ૾ ૽ૢૢૢૢૢૢૺ ૠૢ૿૽ૻ૽ૢ૽ૼૺૺૺૺૺૺૺ	500- ೫;ฃЁ⊘÷¡₿	-
10.¿—μμ"§"√·≈-√È"πÕ" À"√	‡°'π°«Ë"À√ ‡∑Ë' ^ŵ Õ_∫2, 500 j.²	500- ڲٚۥۼۊۜ۞÷ _ٳ ؚۛ؋	250- ‱;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	100- ‱≓∂;∺ß	‰jË∂÷ß10 0 j.²

Biomass

 Biomass increment of shoot and roots were lowest during the 3-day HRT and highest during 7-day HRT.

Nutrient Accumulations

- The nutrient (TN and TP) accumulations in roots during 7-day HRT was higher than 5- and 3-day HRT, respectively.
- But no obvious trend was observed in nutrient accumulations in shoots.

Nitrogen Accumulations

- The N accumulation in roots of both vetivers ecotypes were higher than shoots.

=> the size of vetivers was small. As a result, small amount of N was needed for the growth of stems and leaves.